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The use of entangled states was shown to improve the fundamental limits of spectroscopy to beyond the
standard-quantum limit. Here, rather than probing the free evolution of the phase of an entangled state with
respect to a local oscillator, we probe the evolution of an initially separable two-atom register under an Ising
spin Hamiltonian with a transverse field. The resulting correlated spin-rotation spectrum is twice as narrow
as that of an uncorrelated rotation. We implement this ideally Heisenberg-limited Rabi spectroscopy
scheme on the optical-clock electric-quadrupole transition of 88Srþ using a two-ion crystal. We further show
that depending on the initial state, correlated rotation can occur in two orthogonal subspaces of the full
Hilbert space, yielding entanglement-enhanced spectroscopy of either the average transition frequency
of the two ions or their difference from the mean frequency. The use of correlated spin rotations can
potentially lead to new paths for clock stability improvement.
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Different quantum technologies rely on entangled states as
their primary resource. In quantum metrology it was shown
that entangled states can reduce the uncertainty in spectros-
copy. Spin-squeezed states in atomic ensembles have shown
spectroscopic uncertainty below the standard quantum limit
(SQL) [1–7]. In the extreme case of fully entangled spins, it
was shown that using Ramsey-like spectroscopy of a
Greenberger-Horne-Zeilinger state leads to Heisenberg-
limited estimation of the transition frequency [8–13].
In Ramsey spectroscopy, the phase of a free-evolving

superposition is compared to a local oscillator (LO).
Alternatively, in Rabi spectroscopy, the state evolution
under a time-dependent Hamiltonian is investigated.
Under the rotating-wave approximation, the Rabi
Hamiltonian, H ¼ ℏ½Ωσy þ δσz�, generates spin rotations.
Here, σi are the Pauli spin operators,Ω is the Rabi frequency,
and δ is the detuning of the Rabi Hamiltonian from the
atomic transition frequency. The initial state is a super-
position of the Rabi-Hamiltonian dressed states [14]. The
δ ¼ 0 point at which the Rabi Hamiltonian frequency is on
resonance is the point at which spin rotation is maximal. The
width of the Rabi spectrum is determined by the gap between
the two dressed states, namely the Rabi frequency Ω. An
inherent difference between Rabi and Ramsey spectroscopy
is the line shape width, which is roughly 60% broader for
Rabi spectroscopy. Another main difference between the two
is that while the Ramsey spectrum exhibits multiple fringes,
which usually requires calibration in order to determine the
resonance peak, the Rabi spectrum exhibits a single peak.
When the spectrum is broad, Rabi spectroscopy yields the
spectral structure in a clear and straightforward way.
Heisenberg-limited Ramsey spectroscopy investigates

the free evolution of superpositions in entangled subspaces.

By the same token, Heisenberg-limited Rabi spectroscopy
can be engineered by investigating rotations of states in these
entangled subspaces by many-body spin Hamiltonians [15].
Similarly to single-spin Rabi spectroscopy, the resonance
frequency is determined by the maximal rotation angle, and
the width of the resonance is given by the gap between the
two eigenstates of the Hamiltonian in this subspace.
In this Letter, we show that an Ising spin-interaction

Hamiltonian with a transverse field generates rotations
in two orthogonal subspaces of a two-spin Hilbert space—
the even- and odd-parity subspaces. In the even subspace,
spanned by fj↑↑i; j↓↓ig, this Hamiltonian results in
Heisenberg-limited Rabi spectroscopy of the average spin
transition frequency; whereas in the odd subspace spanned
by fj↓↑i; j↑↓ig, Heisenberg-limited Rabi spectroscopy of
the spin’s frequency difference from the mean transition
frequency is performed. We implement this protocol using
the optical clock electric-quadrupole transition in a two-
88Srþ-ion crystal and show that the resulting correlated spin
rotation spectra are indeed twice as narrow as single-ion
Rabi spectra.
Heisenberg-limited spectroscopy was shown to exhibit

limited improvement of spectroscopic precision after long
averaging times, because as the sensitivity to the resonance
frequency increases, so does the sensitivity to dephasing
[16]. Theoretical investigations have shown that an
improvement of measurement precision or clock stability
is possible; however, it depends on the details of the
noise and the spectroscopic method. [17,18]. Hence, new
Heisenberg-limited spectroscopy technique development
can potentially introduce clock stability improvement
under different conditions. For short averaging times
where projection noise is dominant, Heisenberg-limited
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spectroscopy is advantageous, since it yields lower uncer-
tainty for a given integration time.
We investigate a system of two interacting spins, under

the influence of an Ising two-spin Hamiltonian with a
transverse field:

H ¼ ℏ½Ωσy ⊗ σy þ δ1ðσz ⊗ I þ I ⊗ σzÞ
þ δ2ðσz ⊗ I − I ⊗ σzÞ�: ð1Þ

Here the δ1ðσz ⊗ I þ I ⊗ σzÞ term represents a magnetic
field along the z axis common to both spins, and the term
δ2ðσz ⊗ I − I ⊗ σzÞ represents the difference between
the fields on each spin. The Ωσy ⊗ σy term is an Ising-
type interaction which creates a correlated rotation of the
two spins.
The Hamiltonian in Eq. (1) commutes with σz ⊗ σz and

therefore conserves state parity and does not mix between
the even fj↓↓i; j↑↑ig and odd fj↓↑i; j↑↓ig parity sub-
spaces. In addition, the even and odd subspaces are
degenerate under the operations σz ⊗ I − I ⊗ σz and
σz ⊗ I þ I ⊗ σz, respectively. As a result, superpositions
of the states j↑↑i; j↓↓i (j↓↑i; j↑↓i) are invariant to
changes in δ2 (δ1).
The two subspaces above can be thought of as two super-

spin-half metrological subspaces. As an example, in the
even subspace, the two basis states of a super-spin-half
system are j↑̃i ≔ j↑↑i; j↓̃i ≔ j↓↓i. Ising coupling acts as a
y rotation in this subspace, σ̃y ¼ σy ⊗ σy, and a z rotation is
generated by σ̃z ¼ ðσz ⊗ I þ I ⊗ σzÞ. Rotations around z
in the odd subspace are generated by ðσz ⊗ I − I ⊗ σzÞ.
The Ising Hamiltonian in Eq. (1) therefore performs Rabi
spectroscopy in the two spin subspaces with a Rabi
frequency Ω and detunings of 2δ1 and 2δ2. The factor of
2 in the detuning results in a twofold narrowing of the Rabi
resonance, leading to Heisenberg-limited determination
of the resonance frequency under spin projection noise.
Notice that a general two-spin state is a direct sum of states
in these two subspaces. A measurement will therefore lead
to a single bit of spectroscopic information, thus increasing
the standard deviation due to projection noise.
In our experiment, the pseudospin states are the two

optical-clock transition levels, 5Sj¼1
2
;mj¼−1

2
and 4Dj¼5

2
;mj¼−3

2
,

in trapped 88Srþ ions. Our ions are trapped in a linear Paul
trap and laser-cooled to the ground state of motion [19–21]
in the axial direction. We drive the optical clock transition
using a 674 nm narrow-linewidth laser (< 50 Hz). We
address the two ion crystal with a single large-waist beam
which implements both global rotations as well as the
transverse Ising Hamiltonian. Alternatively, we individu-
ally address a single ion of our choice using a tightly
focused laser beam. The state of our ion is detected using
state-selective fluorescence detection. For more details
about the system, see Refs. [20–22].

The Ising Hamiltonian in Eq. (1) is realized using a
Mølmer-Sørensen (MS) interaction [23]. We denote the
clock transition carrier frequencies of ion 1 and ion 2 as
ω1
0 and ω2

0, respectively. The ions are illuminated with a
bichromatic 674 nm laser beam at frequencies

ω� ¼ ω0 � ν� ε − δ; ð2Þ

where ω0 ¼ ðω1
0 þ ω2

0=2Þ is the average clock transition
carrier frequency, ν is the axial trap frequency, ε is a
symmetric detuning, and δ is an asymmetric detuning from
the sideband transitions. [The name symmetric (antisym-
metric) detuning reflects the fact that the detuning of ωþ
and ω− from the blue and red motional sidebands,
respectively, has the opposite (same) sign; see Fig. 1(c).]
We also define the center laser frequency as ωL ¼
ðωþ þ ω−=2Þ ¼ ω0 − δ. Here, we work in the regime

(a)

(c)

(b)

FIG. 1. Coupling in the two metrological subspaces using
Mølmer-Sørensen interaction. (a), (b) Experimental results of
resonant Rabi nutation between j↓↓i ↔ j↑↑i and j↑↓i ↔ j↓↑i,
respectively. Inset: Rotations illustrated on a Bloch sphere
representing each subspace. (c) Laser frequencies and the
configuration of spin and motion energy levels coupled by the
Mølmer-Sørensen operation for both the j↓↓i ↔ j↑↑i (left)
and j↑↓i ↔ j↓↑i (right) transitions. In the limit of large ε,
this operation approximates the Hamiltonian H in Eq. (1). Insets:
A diagrammatic representation of δ1 and δ2 scans in the two
subspaces.
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ε ≫ ηΩ̃, where η is the Lamb-Dicke parameter of the trap
axial center-of-mass mode and Ω̃ is the clock transition
carrier Rabi frequency. In this regime, the coupling to
motion through the red and blue sidebands can be adia-
batically eliminated. In this case, two-photon coupling
yields collective spin rotations, and the Hamiltonian is
well approximated as an Ising σy ⊗ σy interaction, with a z
transverse field due to δ1 ¼ δ. If ω1

0 ≠ ω2
0, then dynamics is

governed by the Hamiltonian in Eq. (1), where δ2 repre-
sents the difference in detuning between ions and Ω ¼
ðη2Ω̃2=εÞ is the two-spin coupling. Using the notation
above, δ1 ¼ ωL − ω0 and δ2 ¼ ðω1

0 − ω2
0=2Þ. The insets in

Fig. 1(c) show a diagrammatic illustration of the different
detunings in this regime. We begin by performing corre-
lated Rabi nutation in the two subspaces using resonant
Ising interaction. Here, we have initialized our system in
j↓↓i or j↓↑i and turned on our MS interaction, setting
δ1 ≃ δ2 ≃ 0. Correlated Rabi nutation curves in the two
subspaces are shown in Figs. 1(a) and 1(b). As seen,
coupling to states outside the subspace is minimized by the
choice of large ε. We observe a complete correlated spin-
flip at a π-time of τπ ¼ ðπ=ΩÞ, which is about 1300 μs in
this experiment.
Next, we performed a wide Rabi spectroscopy scan by

scanning δ1 from −ε to ε, i.e., nearly to the motional
sideband, by scanning the MS laser center frequency, ωL. A
measurement of the populations of the relevant spin states
vs δ1 is shown in Fig. 2. Here we set δ2 ≃ 0 and the pulse
time to τπ. As seen, when the system is initialized in the
even subspace, correlated spin rotation does not occur
unless δ1 ≃ 0. Around this resonant value, marked by a grey
background, a sharp j↓↓i → j↑↑i transition is observed.
This correlated spin-flip resonance is enlarged in the inset
of Fig. 2(b). On the other hand, when the system is
initialized in the odd subspace, correlated spin-flip occurs
at any value of δ1. This is due to the fact that the
fj↓↑ij↑↓ig subspace is insensitive to δ1. This odd sub-
space has been used before as a decoherence-free subspace
due to this resilience to common phase noise. In both
subspaces, as δ1 approaches ε, single-photon sideband
transitions occur, resulting in rapid population oscillations.
We next turned to a combined scan of both δ1 and δ2.
This scan was carried out by light-shifting the resonance
frequency of only one of the ions using an off-resonance
single-addressing beam (see Supplemental Material [24]).
With a detuning δls=2π ≃ 3.5 MHz and a Rabi frequency
which varied within the range Ωls=2π ≃ 0–40 kHz, we
scanned the light shift at Δfls=2π ≈ ðΩ2

ls=2πδlsÞ ≃
0–400 Hz. By definition, δ2 ¼ � 1

2
Δls=2π. The sign is

determined by the specific ion being light-shifted. The
magnitude of Δfls, and therefore δ2, was scanned by
varying the intensity of the individual addressing laser.
For every value ofΔfls a full scan of ωL was carried out, by
changing the parameter δ in Eq. (2). Figure 4 shows the

population of spin states j↑↑i and j↑↓i for such a scan,
when initializing in j↓↓i and in j↓↑i, respectively. As seen,
in the odd subspace, a change to Δfls causes a resonant
response every time δ2 ¼ 0, whereas a change of ωL does
not change the position of this resonance. In the even
subspace, a scan of ωL yields a resonant response whenever
ωL − ω0 ¼ 0. The change of Δfls shifts the position of
this resonance symmetrically with respect to the sign
of Δfls, leading to the curved shape in Fig. 3(a). This
symmetry proves that in the even subspace, it is only the
contribution of Δfls to δ1 which changes the resonance
position (see Supplemental Material [24]). Note that since
symmetric phase noise is more common in our experiment
than differential phase noise between the two ions, the
resonance in the even subspace is much noisier than that in
the odd subspace.
Finally, to determine whether our spectroscopy is

Heisenberg limited, we performed a narrower scan of δ1
and δ2, each in its corresponding subspace, and compared
the resulting spectrum to that of standard Rabi spectroscopy
having the same pulse time τ and the same overall inter-
rogation time. First, we demonstrate spectral width narrow-
ing. Ten short frequency scans of 50 experimental
realizations per frequency were recorded, in order to avoid
slow frequency drift during each scan. Scans were inter-
laced between uncorrelated and correlated two-ion Rabi

(a)

(b)

FIG. 2. Broad scan of δ1 in both subspaces. (a) δ1 scan results
when initializing in j↓↑i and measuring the population in j↑↓i
(yellow) and j↓↑i (purple). (b) δ1 scan results when initializing
in j↓↓i and measuring the population in j↑↑i (blue) and j↓↓i
(orange). The data were shifted to be symmetric around δ1 ¼ 0,
and the solid lines are simulation results with no fit parameters.
The discrepancy between simulation and data in (a) is due to in
population leaking to j↓↓i; j↑↑i owing to experimental imper-
fections. The inset of (b) is a magnification of the shaded area in
(b). The δ1=ε interval is shaded in (a) for comparison. In both
measurements, ε ¼ 2π × 25.5 kHz ≈ 10ηΩ.

PHYSICAL REVIEW LETTERS 120, 243603 (2018)

243603-3



spectroscopy. These spectra were shifted to be centered
at the same resonance frequency and fitted together to
the theory. Here the δ1 scan in the even subspace was
performed by scanning ωL, and the δ2 scan in the odd
subspace was achieved by scanning Δfls. Uncorrelated
Rabi spectroscopy was performed by a regular single-ion
Rabi spectroscopy scan. The spectral shape of the excited-
state population in two-level Rabi spectroscopy is [25]

Pð↑Þ ¼ A
sin2( Ωτ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðαδΩÞ2

q
)

1þ ðαδΩÞ2
; ð3Þ

whereΩ is the Rabi frequency, and the contrast parameter A
accounts for experimental imperfections. α is the narrowing
factor, which is 1 for an uncorrelated Rabi spectroscopy
and 2 for perfect two-qubit correlated Heisenberg-limited
Rabi spectroscopy. The results of the different scans are
shown in Fig. 4. For the δ1 scan in the even subspace,
we obtained α ¼ 1.92� 0.02 for a correlated rotation and
α ¼ 1.01� 0.01 for the single-ion case using a maximum-
likelihood fit to Eq. (3). In the odd subspace, a δ2 scan
yielded α ¼ 1.78� 0.03 for the correlated case and
α ¼ 0.88� 0.02 for single-ion spectroscopy. Both odd
and even subspaces exhibit correlated rotation spectrum
narrowing by a factor close to 2. The insets of Fig. 4
compare uncorrelated and correlated two-ion spectra hav-
ing the same integration times. The uncorrelated spectrum
is the widest, but it holds two data points for each scanned
parameter value. Therefore, estimation of the resonance can

be performed with
ffiffiffi
2

p
reduction in the uncertainty. This

reduction can be manifested spectrumwise in a spectrum of
the probability of both ions excited. The resulting spectrum
is

ffiffiffi
2

p
narrower than a single-ion case, thus matching the

above frequency uncertainty. The correlated case exhibits
nearly twice as narrow a spectrum with the same number of
experimental realizations.
To demonstrate the estimation of the resonance fre-

quency below the SQL, we analyzed a single even-
subspace scan out of the ten presented in Fig. 4. We
obtained sensitivities of 0.23 Hz=

ffiffiffiffiffiffi
Hz

p
and 0.43 Hz=

ffiffiffiffiffiffi
Hz

p
for the two-ion correlated and uncorrelated cases, respec-
tively, showing an improvement by a factor of 1.87, well
above the expected SQL of

ffiffiffi
2

p
≈ 1.41. This proves that

correlated rotation results are indeed well below the
standard quantum limit and close to the Heisenberg limit.
In this Letter, only a two-ion crystal was used for a proof-

of-principle experiment, and hence the correlated two-ion
Rabi spectroscopy yields uncertainty only slightly better
compared to a single-ion Ramsey spectroscopy, due to the
constant factor in the linewidth of the two methods.
However, the features demonstrated here are general and
will apply to a larger number of spins as well. For N ≥ 3
spins, the scaling already wins over the above linewidth
factor. The required generalized Hamiltonian that will
generate correlated N-spin rotations will be given by

(a) (b)

FIG. 3. Sensitivity of correlated rotations to δ1 and δ2. (a) Pop-
ulation of j↑↑i when initializing in j↓↓i. (b) Population of j↑↓i
when initializing in j↓↑i. We shift the resonance frequency of
one of the two ions by Δfls using a tightly focused, off-resonance
laser beam. As a result, δ1 is shifted by jðΔfls=2Þj and δ2 is
shifted by �ðΔfls=2Þ, where the sign depends on which ion is
shifted. For each value of Δfls we scan the laser frequency ωL
with respect to an arbitrary offset and measure populations.
As shown, a resonance in the odd subspace appears every time
δ2 ¼ 0 regardless of ωL, which only shifts δ1. On the other hand,
in the even subspace, Δfls shifts the δ1 resonance symmetrically
when either of the ions is light-shifted, indicating that the
associated change in δ2 does not affect this subspace. The full
two-spin-state populations corresponding to this experiment can
be found in the Supplemental Material [24].

(a) (b)

FIG. 4. Heisenberg-limited spectroscopy. (a) Comparison be-
tween the δ1 spectra for the cases of a single ion (red and orange
full circles for the right and left ion, respectively) and of two
ions correlated by spectroscopy in the even subspace (blue full
circles). All spectra are shifted to center around δ1 ¼ 0 due to
small shifts (tens of hertz) and fitted to Eq. (3) (solid blue line).
(b) Comparison between the δ2 spectra of two ions in an
uncorrelated (red full circles) and a correlated (blue full circles)
measurement in the odd subspace. In the uncorrelated case, the
average frequency of the two ions was measured on each ion
separately as a function of δ2, and both populations were
averaged to give the measurement result (See Supplemental
Material [24]). The spectra were also shifted to be centered at
δ2 ¼ 0. Insets: Comparison between the normalized uncorrelated
case fit, the product of the two single-ion fits in the uncorrelated
case, and the normalized correlated fit for both δ1 and δ2 scans
(red, purple, and blue solid lines, respectively).
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ℏ

�
ΩðσyÞ⊗N þ

XN
i¼1

δiI ⊗ … ⊗ σiz ⊗ … ⊗ I

�
: ð4Þ

Using this Hamiltonian, an N-fold narrower Rabi
spectrum can be measured around the average resonance
frequency. The simulation of the above N-body correlated
Hamiltonian was proposed in Refs. [26,27]. In principle, a
universal quantum simulator can be used to implement
multi-ion Heisenberg-limited Rabi spectroscopy on any
number of spins.
To conclude, in this Letter we presented and demon-

strated a two-ion Heisenberg-limited Rabi spectroscopy.
We initialized the ions in a separable state, and by operating
with an entangling operator we obtained a spectrum
narrower by a factor of ≃2 with respect to conventional
single-ion Rabi spectroscopy. We observed that under the
influence of an Ising Hamiltonian, the two-ion system
splits into two orthogonal subspaces that can be used as
different probes for the difference and the average of the
ions’ optical resonance frequency, each of them with
Heisenberg-limited uncertainty. We believe that the experi-
ment presented here can be scaled up to more than a two-
ion crystal, and may be useful as a spectroscopic tool for
optical frequency measurements.
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